57th Annual Asphalt Paving Conference

Managing Density For Asphalt Pavement

March 26-27, 2013 Soaring Eagle Casino & Resort Mt. Pleasant, Michigan

Cost of Compaction

Relative cost comparison between asphalt pavement componets

Component

- Least expensive part of the process
- Compaction adds little to the cost of a ton of asphalt

Importance of Compaction

UK-AI Study
1.5% increase
in density
leads to 10%
increase in
fatigue life.

Quality Control & Acceptance of Joint Density

Density Gauge

6-inch Core

Compaction of HMA Pavements

Cores determine density

- Quality control
- Payment
- Different from nuclear
- Correlate readings

Compaction of HMA Pavements

Nuclear gauges

- Set up rolling pattern
- Used for quality control
- Adjust rolling when
 - Mix
 - Conditions change

Factors Affecting Compaction

Factors Affecting Compaction

- Mix Properties
 - Aggregate
 - Asphalt
 - Air (Volumetrics)
 - Mix Temperature
- Lift Thickness
- Subgrade & Base Support
- Environmental Factors
- Type and Size of Roller, # of Passes

Effect of Aggregate

- Gradation
 - Continuously-graded, gap-graded, etc.
- Shape
 - Flat & elongated, cubical, round
- Surface Texture
 - Smooth, rough
- Strength
 - Resistance to breaking
 - Abrasion

Aggregate Types

- Natural
- Processed
- Synthetic

- Round (uncrushed)
- Single Crushed Face
- Multiple Crushed Faces

Asphalt Mixtures

Mixtures

- Compaction varies
- Adjust thickness for rolldown
- Match mat thickness

Performance Graded Binders

147.2 F -7.6 F PG 64-22

"Performance Grade"

Minimum pavement temperature

Average 7-day max pavement temperature

Loading Rate of Loading

Example

Mainline pavementPG 64-22 ← 70 mph

Toll boothPG 70-22 ← Slow

Weigh StationsPG 76-22Stopping

Effect of Temperature - Mat Too Hot

- Bulges in front of drums
- Mix moves & will not compact
- Roller leaves deep marks

Solution

- Stay back from paver
- Allow mat to cool (stiffen)

Effect of Temperature - Mat Too Cold

- Lower limit 180° F
 - No additional compaction
- No aggregate movement
 - Crushing aggregate
- Solutions
 - Closer to paver
 - Slow paver
 - Add rollers
 - Increase mix temp

Effect of Lift Thickness

- Optimum lift thickness
 - 4x Nominal Maximum Aggregate Size (NMAS)
- Acceptable lift thickness = 3x to 5x NMAS
- Problems Compacting
 - 2x NMAS or less
 - 6x NMAS or more
- Especially critical paving on uneven surfaces

Asphalt Mix Designation

Superpave Designation

37.5 mm

25.0 mm

19.0 mm

12.5 mm

9.5 mm

4.75 mm

Remember: Max Size, mm

50.0

37.5

25.0

19.0

12.5

9.5

Lift Thickness

- Good support critical to obtain proper density
- Spongy or unstable support
 - Provides little resistance to the rollers
 - Mixture not confined, energy disipated
- Mixture moves & cracks rather than compacts.

Effect of Environmental Factors

Factors affecting how fast the mix cools

- Affects time available for compaction
 - Ambient air temperature
 - Temperature of the existing surface
 - Wind speed
 - Lift thickness
 - As-delivered mix temperature
 - Overcast conditions

Effect of Environmental Factors

Minnesota DOT's PaveCool

- Excellent tool to determine compaction time
 - Based all factors
 - Free download

http://www.dot.state.mn.us/app/pavecool/index.htm

Forces of Compaction & Roller Types

Effect of Roller Type, Size, Passes

Roller type and size affects:

- Magnitude of the load
- How the load is applied

Number of passes:

- Increases the density
- To break over point after a # of passes
 - Lowers compaction
 - If continued, damages mat

Forces of Compaction

Compaction forces

- Low force
 - Static pressure
 - Manipulation
- Higher forces
 - Impact
 - Vibration

Static Steel-Wheeled Rollers

4 -14 ton rollers applies static force

- 3-Wheel
- Vibratory rollers in static mode
- Lighter rollers for finish rolling
- Drive wheel must face paver
 - "Climbs" uncompacted mix
 - Tiller wheel pushes mix
- Drums must be smooth and clean
 - Water spray & scraper bars
 - Critical for polymer modifiers
 - Avoid rollers used on agg base

Manipulation

- Tire pressures:
 - ~80 psi (cold) for compaction
 - ~50 psi (cold) for finish rolling
 - Range not to exceed 10 psi
- Tires must be hot to avoid pickup
- Tires must be smooth no tread
- Not used for
 - Porous friction
 - SMA
 - Polymer modified mixes

- Force is:
 - Weight on tire divided contact area
 - Expressed as PSI
- Change PSI by changing:
 - Tire pressure
 - Ballast
- Low tire pressure
 - Low force
- High tire pressure
 - High force

- Front-rear axles offset
 - Manipulates mix
 - Under & between tires
- Tighten finish
 - To resist moisture
- Lowering pressure
 - Increases manipulation
- Increasing pressure
 - Increases static force

Keep tires hot and clean:

- Drive back & forth on cold mat
 - Up to 30 minutes
 - Internally heat tires
- Keep moving to keep tires hot
- Skirts may be needed to retain heat
- Scrubbers must be used
 - Knock off any accumulation
 - Only use release agent
- Once pick-up starts
 - Marks will not come out
 - Tires difficult to clean

Vibratory Rollers

- Commonly used for initial rolling
 - Breakdown
 - Largest compaction increase
- "Heavy" rollers
 - Heavy duty components & frames
 - 8-18.5 tons, 57-84 in wide
 - 50-200 lbs/linear inch (PLI)
- Frequency: 2700-4200 impacts/min
- Amplitude: 0.016-0.032 in
 - Thin overlays (≤ 2 in)
 - Low amplitude or static mode
- Operate at least 10 impacts/foot
 - -2-4 mph

Vibratory Rollers

Effectiveness

- Movement of drum initiates particle motion
- When particles are moving
 - Resistance to deformation is reduced
- Force applied by weight of drum plus inertia
 - Produces a greater compactive effect
 - Achieving more compaction per pass than static rollers

Vibratory Rollers - Amplitude

High Amplitude

- Spinning eccentric weight causes drum movement
- Falling drum adds to compactive force
- Distance drum moves is called amplitude
- Amplitude determines impact force

Vibratory Rollers - Amplitude

- Amplitude too high
- Travel speed too fast
- Vibrating cool mat
 - Roll closer to paver
- Finish rolling too cool
 - Roll closer to intermediate roller
- Finish roller too light

Vibratory Rollers - Frequency

Height FREQUENCY
Path of vibrating drum center
Low frequency High frequency

Eccentric weight Travel

Time and distance (speed is constant)
Impact spacing is closer together in high frequency

- Frequency
 - Drum impacts per minute
- Match travel speed to frequency
- Best results when impact spacing is 10-14 per foot

Vibratory Rollers - Frequency

Vibrating Reed Tachometer

- Checks the accuracy of the roller's frequency reading
- Contains a group of reeds with a specific natural frequency
- As a single vibrating drum passes VRT
 - Observe which reed is vibrating
 - Check value off the machine tachometer

Vibratory Rollers - Frequency

Drum Impacts per Foot

Frequency	2 MPH	3 MPH	4 MPH	5 MPH
2000 vpm	11.36	7.58	5.68	4.55
2200 vpm	12.50	8.33	6.25	5.00
2400 vpm	13.64	9.09	6.82	5.45
2600 vpm	14.77	9.84	7.39	5.91
2800 vpm	15.91	10.61	7.95	6.36
3000 vpm	17.05	11.36	8.52	6.82
3200 vpm	18.18	12.12	9.09	7.27
3400 vpm	19.32	12.88	9.66	7.72
3600 vpm	20.45	13.64	10.22	8.18
3800 vpm	21.59	14.39	10.80	8.63
4000 vpm	22.72	15.16	11.36	9.10

- Breakdown Rolling
- Intermediate Rolling
- Finish Rolling

Roller Operations - Temperature Zones

Compactive Force

Pressure Impact Vibration

Pressure Manipulation

Pressure

Temperature Ranges

300° - 260°F

250° - 220° F

200 - 180° F

Breakdown Rolling

- Initial compaction operation
- Gets most of the density
- Begin at highest temp without mat distortion
- Work closely to paver
- Dual drum vibratory works best
 - Both drums powered
 - Pressure
 - Impact
 - Vibration

Breakdown Rolling

- Traditionally 3-wheel steel
- D/D vibratory most common
- Vibration most productive during breakdown
- Pneumatics
 - Used on base courses
 - Leveling courses
 - Forces mix into cracks
 - Compacts without bridging minor ruts
 - Leave deep marks -- hard to roll out

Intermediate Rolling

- Final step in getting density and initial smoothness
- Mat hot enough to allow aggregate movement
- Mat already close to final density
- Too much force will fracture aggregate
- Typical roller type:
 - Traditionally pneumatic
 - Vibratory at low amplitude and/or static mode

Main purpose

- Minimal compaction
- Smoothness
- Removal of any marks
- Once smooth, stop rolling

Typical roller types:

- Tandem steel-wheel
- Pneumatic w/lower pressure
- Vibratory static mode only

Rolling Pattern

- Speed & lap pattern for each roller
- Number of passes for each roller
 - One trip across a point on the mat
- Set minimum temperature each roller finishes pattern

• IMPORTANT:

- Paver speed must not exceed compaction operation!!!
 - Paver makes single pass
 - Roller pattern requires 3-7 passes

Reversing Directions

- Avoid straight stops
- Turn toward center of mat
- Don't turn drum while stopped
- Next pass should roll out any marks created by reversing

Reversing

For best results

- Roll at highest temperature without excessive displacement
- Stay close to paver
 - Monitor weather
- Keep up but not too fast
 - Adj paver speed

Overlaps

- 6" overlap assures uniform compaction
- Include overlap when selecting drum width
- Roller should cover mat in 3 overlapping passes

Rolldown

- Paver lays thicker lift
- Roller compacts to the design thickness
- Superpave mixes rolldown ~ 25%
- SMA, PFC & other open-graded mixes rolldown ~15%

Rolling a Crown

- Never straddle crown
- Work from bottom toward crown both sides
- Strengthens mat to support roller on slope
- Overlap crown 6" on last pass

Parking

- Never park on a hot mat
- Leaves a transverse bump that cannot be rolled out
- When servicing:
 - Roll back to cooler mat
 - Service vehicles on mat
 175° F

Achieving Density on HMA Joints

Longitudinal Joint Types

Proper Overlap:

- 1.0 <u>+</u> 0.5 inches
 - Exception:
 Milled or sawed joint should be 0.5 inches

Rolldown

• 15-25% based on mix

Rolling Unsupported Edge?

Option 1 Hang over 4-6" Roller

- Concern:
 - Developing stress crack?
- Merit:
 - Min lateral movement?

Rolling the Supported Edge

1st pass off the joint approx 6-8 inches

2nd pass overlaps on cold mat 3-6 inches

Alternate Method 1st Pass over the Supported Edge

Roller in vibratory mode with edge of drum overhanging 2 to 4-inches on cold side.

Roller

Concern with this method is if insufficient HMA laid at joint, then bridging occurs (roller supported by cold mat)

Transverse Joint Starting a Lane

- Roll transverse
- Roll static
- Start drum on cold side
- Move over in 6" 8"
 increments until drum is
 all on hot side

Checking Transverse Joint

Rolling Transverse Joint

Safety and Traffic Control Concerns

Reference Materials on the Topic:

MS-2: Mix Design Methods

SP-2: Superpave Mix Design

MS-4: The Asphalt Handbook

MS-22: HMA Construction

http://www.asphaltinstitute.org

Thank You

Wayne Jones, P.E.

Asphalt Institute

614-855-1905

wjones@asphaltinstitute.org